If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+4x-320=0
a = 2; b = 4; c = -320;
Δ = b2-4ac
Δ = 42-4·2·(-320)
Δ = 2576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2576}=\sqrt{16*161}=\sqrt{16}*\sqrt{161}=4\sqrt{161}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{161}}{2*2}=\frac{-4-4\sqrt{161}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{161}}{2*2}=\frac{-4+4\sqrt{161}}{4} $
| 18=13+n=-9 | | (2x+5)(6x-3)=0 | | 2a²+4a+16=0 | | |6-x|=54 | | 32=2a,a= | | y-y4+3=30 | | 10n/2=7n+14 | | 37n^2-24n=0 | | 8+2x=2(-x+7)-26 | | 0.562=2378x+0.003 | | 5^2x=5^x+1-6 | | x/9+5=-4 | | 50+3x=8 | | -2-3x=2x+8 | | (-6z−2)/(3.8X102)=10 | | x^2+4x=2700 | | 8+2=7-5x | | 3(z+2z)=60+3z-4z | | (2x-3)/6=4 | | 3m^2-11-20=0 | | 7x-12=4-x | | 9+7=x | | n3=15 | | 81^(x+2)=27 | | 42+4x+14=10x+2 | | 2x²+3x+3=60 | | 19x+83=180 | | Y=5x^2-30+6 | | 6x+2x=480 | | 4(u-6)=3(u+1) | | h-(=8)=3 | | 1/5x-4=5 |